## Macadamia Nut

Catherine G. Cavaletto Department of Tropical Plant and Soil Science University of Hawaii at Manoa, Honolulu, HI

**Scientific Name and Introduction:** The family Proteaceae includes about 10 species of the genus *Macadamia*, two of which produce edible nuts: *M. integrifolia* and *M. tetraphylla* or hybrids of these. The major species of commerce is *M.integrifolia*. Macadamia nuts are native to Australia and are produced there as well as in Hawaii, Central and South America and parts of Africa. Nearly all production consists of grafted trees of cultivars developed in Hawaii or Australia. The edible kernel is enclosed in a thick, hard shell that, in turn, is enclosed in a husk that separates from the tree at about the time the seed is mature. The kernel is nearly spherical, consisting of joined equal-sized halves, ie., cotyledons.

Quality Characteristics and Criteria: Kernels should be a light cream color, nearly spherical in shape and free of blemishes, rancidity, mold, decay, insect damage, extraneous material, hollow centers, discoloration, and adhering shell. Fully developed macadamia kernels should contain  $\geq 72\%$  oil; the highest quality kernels contain 72 to 78% oil and 1.5% moisture. Kernels of *M. tetraphylla* typically contain less oil. Oil content is a major quality factor that varies with cultivar and maturity, and is inversely related to sugar content (Ripperton et al., 1938).

**Horticultural Maturity Indices:** Following a prolonged flowering season, macadamia nuts mature over a long period from late Summer until late Spring. Kernels are mature when oil accumulation is complete. Shortly after this time, the nuts fall to the ground and are harvested. Sometimes, shake harvesting is employed to facilitate the harvest while minimizing the amount of immature nuts harvested. Recommended harvest interval for ground-harvested nuts is 1 mo. Damage by the tropical nut borer [*Hypothenemus obscurus* (F.)] can begin to increase rapidly after 3 weeks on the ground (Jones, 1992).

Grades, Sizes and Packaging: No U.S. grades are established for macadamia nuts, but the State of Hawaii has standards and grades for shelled macadamia nuts, in-shell macadamia nuts and roasted macadamia nuts (Hawaii Dept. of Agric., 1984). The minimum export grade for shelled nuts is Hawaii No. 1, which defines defects and damage, development, and cleanliness as well as maximum moisture content of 1.5% by weight. Off-grade is not a grade, but is a descriptive term applicable to shell nuts which have a market value and designates a quality lower than the lowest applicable Hawaii grade for shelled nuts. The standards also define eight styles: Style I (wholes), Style II (wholes and halves), Style III (cocktail), Style IV (halves and pieces), Style V (large diced), Style VI (chips), Style VII (bits, diced), and Style VIII (fines). There are also standards for in-shell nuts and for roasted kernels. Shelled nuts are usually packaged in 11.4 to 22.7 kg (25 to 50 lb) vacuum-packed or nitrogen-flushed foil bags for the wholesale market. Larger, N<sub>2</sub>-flushed containers are sometimes used.

**Optimum Storage Conditions:** Macadamia nuts should be husked within 24 h of harvest, after which the drying process should be initiated. Freshly-fallen nuts contain about 25% kernel moisture, although nuts that have remained on the ground for extended periods may have as little as 10 to 15% moisture. Drying should begin with ambient air, followed by a gradual increase in temperature that will not exceed  $60 \,^{\circ}\text{C}$  ( $140 \,^{\circ}\text{F}$ ) in the final stage of drying. Drying may be completed in shell (to 1.5% kernel moisture) or the nuts can be partially dried in shell (to about 5 to 6% kernel moisture), followed by cracking and finish drying of kernels alone to 1.5% moisture. It is important to protect the dry kernels from moisture and  $O_2$ , so packaging in a material that is impervious to moisture is important. Vacuum packaging or

nitrogen flush offers protection from  $O_2$ . Exposure to moisture results in loss of crispness and shelf-life. Likewise, prolonged exposure to  $O_2$  results in rancidity. Cold storage is normally not necessary for short-term storage, but might be desirable for extended periods. Frozen storage (-18 °C, 0 °F) can be very effective in extending shelf-life.

**Retail Outlet Display Considerations:** Packaging should protect kernels from moisture and O<sub>2</sub>. Storage temperature is less critical. Nuts are rarely sold in-shell due to difficulty in cracking.

**Chilling Sensitivity:** Macadamia nuts are not sensitive to chilling provided they have been dried. Dry kernels are commonly stored below 15 °C (59 °F) for bulk storage and can successfully be frozen to extend shelf-life. Care must be taken in thawing frozen nuts to prevent condensation and resulting moisture gain.

**Physiological Disorders:** Nuts that fail to develop properly will produce kernels that are low in oil content and may appear shriveled or small. If too immature, kernels are very small and become hard upon drying. Immature kernels also have high sugar content and will brown excessively when roasted. High-moisture kernels dried at higher temperatures develop brown centers when roasted, as a result of high reducing sugar levels. It is necessary to begin the drying process at ambient temperature or with circulating air heated to no more than 38 °C (100 °F) when the kernels are very wet. Minimum reducing sugar levels can be obtained if kernel moisture content is reduced to 8% before increasing the temperature to 52 °C (126 °F) and to 6% before increasing the temperature to 60 °C (140 °F) (Prichavudhi and Yamamoto, 1965).

**Postharvest Pathology:** Extended harvest intervals may result in mold, yeast or bacterial contamination in the field as well as insect damage. Southern green stinkbug [Nezara viridula (L.)], tropical nut borer [Hypothenemus obscurus (F.)], koa seed worm [Cryptophlebia illepida (Butler)] and litchi fruit moth (C.ombrodelta) are the major insect pests causing damage to macadamia nuts in Hawaii, resulting in an unmarketable kernel (Jones and Aihara-Sasaki, 1999). Delay in husking the nuts following harvest can also result in mold growth and fermentation. Husking should occur within 24 h of harvest. The thick shell provides considerable protection for the kernel, but cracked shells and open micropyles can provide entry of fungi and bacteria as well as ants. When the nuts fall from the tree, the kernels contain about 25% moisture. At harvest, moisture level can range from about 10 to 25%. Once the nuts have been dried to 1.5% kernel moisture, the water activity is 0.3 (Beuchat, 1978), insufficient to support the growth of mold or bacteria.

**Quarantine Issues:** There are no significant quarantine issues. A possible issue, is the occasional presence of storage insects such as almond moth (*Ephestia cautella*), merchant grain beetle [*Oryzaephilus mercatur* (Fauvel)] and the dried fruit beetle [*Carpophilus hemipterus* (Linnaeus)] (Cavaletto, 1983)

**Special Considerations:** Kernel stability is related to moisture content and to oxidative rancidity. Of these, moisture content is the most critical. Raw kernels with moisture content exceeding 2% have poor stability (Cavaletto et al., 1966). These kernels brown excessively when roasted and have poor texture. Likewise, roasted kernels must be well protected from moisture to insure preservation of texture and flavor. Protection from O<sub>2</sub> is usually accomplished with vacuum- or nitrogen-packing.

## **References:**

Beuchat, L.R. 1978. Relationship of water activity to moisture content in nuts. J. Food Sci. 43:754-755, 758

Cavaletto, C.G. 1983. Macadamia nuts. In: Handbook of Tropical Foods. H.T. Chan, Jr. (ed), pp. 361-397.

- Cavaletto, C.G., A. Dela Cruz, E. Ross and H.Y. Yamamoto. 1966. Factors affecting macadamia nut stability. I. Raw kernels. Food Technol. 20(8):108-111.
- Hawaii Dept. of Agric. 1984. Standards for roasted macadamia nuts. In: Standards for Processed Foods. Chapt. 44, SS 4-44-13.
- Hawaii Dept. of Agric. 1986. Standards for Hawaii-grown in-shell macadamia nuts. AR-41-46.
- Hawaii Dept. of Agric. 1986. Standards for Hawaii-grown shelled macadamia nuts. AR-41-47.
- Jones, V.P. 1992. Effect of harvest interval and cultivar on damage to macadamia nuts caused by *Hypothenemus obscurus* (Coleoptera:Scolytidae). J. Econ. Ent. 85(5):1878-1883.
- Jones, V.P. and M. Aihara-Sasaki. 1999. Macadamia insect pests. Proc. Hawaii Macadamia Nut Assoc. Ann. Conf., pp. 23-28.
- Prichavudhi, K. and H.Y. Yamamoto. 1965. Effect of drying temperature on chemical composition and quality of macadamia nuts. Food Technol. 19(5):129-132.
- Ripperton, J.C., R.H. Moltzau and D.W. Edwards. 1938. Methods of evaluating the macadamia nut for commercial use and the variation occurring among seedling plantings in Hawaii. Hawaii Agric. Exp. Stn. Bull. 79.